NMR of Oriented Molecules, Fields of Research, Molecular Structure Determination


NMR Enantiomeric Analysis in Liquid Crystal Solvents.

New NMR Method for determination of enantiomeric purity and absolute configuration.


New useful NMR analytical tool for visualization of enantiomeric purity
Very sensitivity and simplicity.
Quantitative determination by peak integration.


Introduction

There are many independent methods for determination of enantiomeric purity of chiral compounds, used in chemistry. Although progress has been made in the last years in developing sensitive and accurate various methods of analysis, many practicing organic chemist traditionally use NMR methods.
There are many limitations in traditional NMR methods, which decreasing accuracy and reliability of results, and shrinking a number of organic compounds, which can be investigated by these methods.
Recently Jacques Courtieu with coworkers from the Laboratoire de Chimie Structurale Organique, Universite de Paris-Sud, France developed a new NMR tool for the measurement of enantiomeric excesses (see Reference [1-34].
All of NMR methods based on the nonequivalence of the chemical shifts of the signals, provided by different diastereotopic groups. Enantiotopic groups can be transformed (converted) to diastereotopic by internal or external influence on the investigated molecules.
Internal influence is confining by direct chemical transformation the mixture of enantiomers into the mixture of diastereomers by chiral reagent. The molecules of substrate and chiral reagent link together by covalent bond.
Diastereotopity by external influencing may be realised by:
Chiral solvating solvents and agents forms diastereoisomeric complexes with molecules of mixture of enantiomers. The origin of complex formation is the hydrogen bonding, charge transfer or ionic pair formation. The anisochronity can be distinguished by dipole-dipole or Van-der-Vaalse type interactions between molecules of chiral reagents and substrate. If substrate tends to associations, then the self induced anisochronity phenomenon may occure. One or more of these factors take place in mechanisms of chiral reagents influence.
The nature of the diastereotopy induction in liquid crystal solvent are entirely another.
The cholesteric liquid crystals are a chiral environment. The R and S enantiomers have different ordering properties in these solvents which implies that their NMR spectra are different.
Three type of NMR parameters of R and S species can be different:
All of these parameters we can not be seen in isotrope solutions, because they canceled by the chaotic motion and reordering in isotrope liquid state.
In the liquid crystal solvents these parameters may occure because the molecules of solute have a partial ordering. Only intramolecular interactions provide the change in NMR spectra, at the time that intermolecular interactions meanings to zero the corresponding NMR parameters.
Dipolar coupling constants and chemical shift anisotropy have all magnetic nuclei. Quadrupole constants have only nuclei with spins more than half. In comparing with isotropic NMR parameters (i.e. chemical shifts and indirect coupling constants) the value of anisotropic parameters are extremely bigest.
The difference between the values of these parameters for pairs of enantiomers reflect on the NMR spectra as the additional splitting or frequencies shifting of observed spectral lines. Maximal difference in values of anisotropic NMR parameters of enantioforms occure for quadrupole couplings, then for dipole-dipole couplings, and finally, for chemical shift anisotropy.


Quadrupolar Splittings of Enantiomers in Cholesteric Liquid Crystals

Quadrupolar interactions is the strongest NMR interactions and consequently are the most sensitive to the differential ordering effect of enantiomers. Each enantiomers in proton-decoupled deuterium spectra show two lines. The distance between them are the quadrupolar splittings, which are proportional to the corresponding order parameters.
For example, the quadrupolar splittings of S-enantiomers is more than 13 times differs from R-enantiomers of 2-deuterium-propionic acid [7].

Fig. 1. Proton-decoupled deuterium NMR spectrum of an R-enriched mixture of CH3-CHD-COOH enantiomers (ee 72%) dissolved in PBLG/CH2Cl2 liquid crystal at 300K [7].

Whenever deuteration is difficult, other anisotropic NMR interactions may be used.


Differencies of Dipole-dipole Couplings Constants of Enantiomers

The second strongest anisotropic interaction is the residual dipolar coupling. Unfortunately, the magnitude and the number of dipole-dipole couplings are such that the proton or carbon-13 spectra are often not resolved when the number of interacting magnetic nuclei in molecule is large.

Fig. 2. Doubled quartet associated to the methyl group of ()-S-methyl-S-P-tolyl-N-tosylsulfoximine observed on the proton coupled carbon-13 spectrum in PBLG at 300K. The peaks due to each enantiomer are labelled by (o) and (*) [14].


Differencies of Anisotropies of Chemical Shifts of Enantiomers

Fig. 3. (a) Expansion of the 13C-{1H} spectrum of -oct-1-yn-3-ol dissolved in PBLG/CDCl3 at 300K. (b)13C-{1H} spectrum of C-1 and C-2 of an R-enriched sample (87.3%) [14].

The quantitative determination of enantiomeric purity was made using peak integration.


Experimental Details

For experimental details see Jacques Courtieu page.

Solvents Some information about NMR solvent you can find in Liquid Crystal solvents for NMR spectroscopy page.


Reference

1. J.Am.Chem.Soc., 1989, 111, 21, 8294-8296. E.Lafontaine, J.P.Bayle, J.Courtieu. -High-resolution NMR in cholesteric medium: visualization of enantiomers.
2. Liq.Cryst., 1990, 7, 2, 293-298. E.Lafontaine, J.M.Pechine, J.Courtieu, C.L.Mayne.- Visualization of enantiomers in cholesteric solvents through deuterium NMR.
3. New J.Chem., 1992, 16, 8/9, 837-838. J.P.Bayle, J.Courtieu, E.Gabetti, A.Loewenstein, J.M.Pechine.- Enantiomeric analysis in a polypeptide lyotropic liquid crystal through proton decoupled deuterium NMR.
4. Tetrahedron Asymm., 1993, 4, 1, 31-34. J.L.Canet, A.Fadel, J.Salaun, I.Canet-Fresse, J.Courtieu.- Enantiomeric excess analysis of sesquiterpene precursors through proton decoupled deuterium NMR in cholesteric lyotropic liquid crystal.
5. Liq.Cryst., 1994, 16, 3, 405-412. I.Canet, J.Lovschall, J.Courtieu.- Visualization of enantiomers through deuterium NMR in cholesterics. Optimization of the chiral liquid crystal solvent.
6. J.Am.Chem.Soc., 1994, 116, 5, 2155-2156. I.Canet, A.Meddour, J.Courtieu.- New, and accurate method to determine the enantiomeric purity of amino acids based on deuterium NMR in a cholesteric lyotropic liquid crystal.
7. J.Am.Chem.Soc., 1994, 116, 21, 9652-9656. A.Meddour, I.Canet, A.Loewenstein, J.M.Pechine, J.Courtieu.- Observation of enantiomers, chiral by virtue of isotopic substitution, through deuterium NMR in a polypeptide liquid crystal.
8. J.Am.Chem.Soc., 1995, 117, 24, 6520-6526. I.Canet, J.Courtieu, A.Loewenstein, A.Meddour, J.M.Pechine.- Enantiomeric analysis in a polypeptide lyotropic liquid crystal by deuterium NMR.
9. J.Chem.Soc.Faraday Trans., 1995, 91, 9, 1371-1375. P.Lesot, D.Merlet, A.Meddour, J.Courtieu, A.Loewenstein.- Visualization of enantiomers in polypeptide liquid-crystal solvent through carbon-13 NMR spectroscopy.
10. J.Phys.Chem., 1995, 99, 40, 14871-14875; (additive corrections) - 1995, 100, 14569. P.Lesot, Y.Gounelle, D.Merlet, A.Loewenstein, J.Courtieu.- Measurement and analysis of the molecular ordering tensors of two enetiomers oriented in a polypeptide liquid crystalline system.
11. Tetrahedron Asymm., 1995, 6, 2, 333-336. I.Canet, J.Courtieu, G.Dauphin, J.-G.Gourcy, H.Veschambre.- Enantiomeric excess analysis of (2R,3S)-3-deuterio-2-methylcyclohexanone and (1S,2R,3S)-3-deuterio-2-methylcyclohexanol, through deuterium NMR in a polypeptide lyotropic liquid crystal.
12. Liq.Cryst., 1996, 21, 3, 427-435. P.Lesot, D.Merlet, J.Courtieu, J.W.Emsley.- Discrimination and analysis of the NMR spectra of enantiomers dissolved in chiral liquid crystal solvents through 2D correlation experiments.
13. Tetrahedron Asymm., 1996, 7, 9, 2489-2492. A.Meddour, A.Haudrechy, P.Berdague, W.Picoul, Y.Langlois, J.Courtieu.- Analysis of the diastereoselectivity of a Diels-Alder cycloaddition through 2H NMR in chiral liquid crystals.
14. J.Am.Chem.Soc., 1997, 119, 19, 4502-4508. A.Meddour, P.Berdague, A.Hedli, J.Courtieu, P.Lesot. - Proton-decoupled carbon-13 NMR spectroscopy in a lyotropic chiral nematic solvent as an analytical tool for the measurement of the enantiomeric excess.
15. J.Chem.Soc.Chem.Commun., 1997, 21, 2031-2032. W.Smadja, S.Auffret, P.Berdague, D.Merlet, C.Canet, J.Courtieu, J.-Y.Legros, A.Boutros, J.-C.Fiaud.- Visualisation of axial chirality using 2H-{1H} NMR in poly((-benzyl L-glutamate), a chiral liquid crystal solvent.
16. J.Am.Chem.Soc., 1981, 103, 22, 6783-6784. J.Courtieu, D.W.Alderman, D.M.Grant.- Spinning near the magic angle: a means of obtaining first order dipolar NMR spectra of molecules dissolved in nematic liquid crystal.
17. J.Phys.Chem., 1997, 101, 31, 5719-5724. P.Lesot, D.Merlet, J.Courtieu, J.W.Emsley, T.T.Rantala, J.Jokisaari.- Calculation of the molecular ordering parameters of (()-3-Butyn-2-ol dissolved in an organic solution of poly(((-benzyl L-glutamate).
18. J.Org.Chem., 1996, 61, 9035. I.Canet, J.L.Canet, J.Courtieu, S.Da Silva, J.Gelas, Y.Troin.- Acetyl Chloride-d3: a convenient non chiral derivatizing agent (NCDA) for a ficile enantiomeric excess determination of amines through deuterium NMR.
19. J.Fluor.Chem., 1997, 86, 149-153. M.Jakubcova, A.Meddour, A.Baklouti, J.M.Pechine, J.Courtieu.- 19F NMR in chiral liquid crystals as a tool to measure enantiomeric excess.
20. Tetrahedron Asymm., 1997, 8, 3, 485-494. A.Meddour, A.Loewenstein, J.M.Pechine, J.Courtieu.- An achiral deuterated derivatizing agents for enantiomeric analysis through NMR in liquid crystal solvent.
21. Tetrahedron Asymm., 1997, 8, 7, 999-1003. T.Chevtchouk, J.Ollivier, J.Salaun, D.Merlet, J.Courtieu.- Determination of the regio- and enantioselectivity of the enzymatic hydrolysis of succinates based on H,C COLOC analysis and deuterium NMR in chiral liquid crystal.
22. J.Am.Chem.Soc, 1998, 120, 5, 963-969. D.Merlet, A.Loewenstein, W.Smadja, J.Courtieu, P.Lesot.- Quantitative description of the facial discrimination of molecules containing a prochiral group by NMR in a chiral liquid crystal.
23. J.Chem.Soc.Chem.Commun., 1998, 22, 2301-2302. D.Merlet, B.Ancian, W.Smadja, J.Courtieu, P.Lesot.- Analysis of natural deuterium NMR spectra of enantiomers in chiral liquid crystals via 2D auto-correlation experiments.
24. Tetrahedron Asymm., 1998, 9, 1871-1881. P.Lesot, D.Merlet, A.Loewenstein, J.Courtieu.- Enantiomeric visualisation using proton-decoupled natural abundance deuterium NMR in PBLG liquid crystalline solutions.
25. Chem.-Eur.J., 1998, 4, 1142-1147. A.Meddour, D.Atkinson, A.Loewenstein, J.Courtieu. Enantiomeric analysis through deuterium NMR in PBLG: Study of homologous series of secondary alcohols.
26. Tetrahedron Lett., 1998, 39, 7499-7502. F.Escalettes, D.Florentin, A.Marquet, C.Canlet, J.Courtieu.- Desulfurization of biotin and epibiotin sulfoxydes with nickel boride: Analysis of the stereoselectivity through 2H NMR in a polypeptide liquid crystal.
27. J.Am.Chem.Soc, 1999, 121, 22, 5249-5258. D.Merlet, B.Ancian, J.Courtieu, P.Lesot.- Two-dimensional deuterium NMR spectroscopy of chiral molecules oriented in a polypeptide liquid crystal: Application for the enantiomeric analysis through natural abundance deuterium NMR.
28. Angew.Chem.Int.Ed., 1999, 38, 2391. A.Meddour, C.Canlet, L.Blanco, J.Courtieu. Diastereomeric shape recognition using NMR in a chiral liquid crystalline solvent.
29. Tetrahedron Asymm., 2000, 11, 1911-1918. C.Canlet, D.Merlet, P.Lesot, A.Meddour, A.Loewenstein, J.Courtieu.- Deuterium NMR stereochemical analysis of threo-erythro isomers bearing remote stereogenic centers in racemic and non-racemic liquid crystalline solvents.
30. Tetrahedron Asymm., 2000, 11, 3635-3644. A.Meddour, J.Courtieu.-Achiral deuterated derivatizing agent for enantiomeric acids by NMR in a chiral liquid crystalline solvent.
31. Chem. Comm., 2000, 2069-2081. M.Sarfati, P.Lesot, D.Merlet, J.Courtieu.- Theoretical and experimental aspects of enantiomeric differentiation using natural abundance multinuclear NMR spectroscopy in chiral polypeptide liquid crystals.
32. Bruker report, 2001, 149, 29-33. P.Lesot, M. Sarfat, D.Merlet, J.Courtieu, B.Ancian, C.Brevard. - Determining enantiomeric purity by 2D natural abundance deuterium NMR in weakly oriented chiral liquid crystals.
33. Enantiomer 2001, 6, 1-7. C.Aroulanda, M.Sarfati, J.Courtieu, P.Lesot.- Investigation of the enantioselectivity of three different polypeptide liquid-crystalline solvents usong multinuclear NMR spectroscopy.
34. Tetrahedron Asym., 2001, 12, 737-744. M.Sarfati, C.Aroulanda, J.Courtieu, P.Lesot.- Enantiomeric recognition of chiral invertomers through 2H &endash; NMR in chiral oriented phases : study of the cis-decalin.

Return to "NMR of Oriented Molecules"

Last Update: August 27th, 2001
By: Alexan Shahatuni (alexsh@msrc.am)